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1. Introduction. It  is well-known that  a number of steady s ta te  prob- 

lems in fluid mechanics involving systems of nonlinear partial differential equa- 

tions can be reduced to the problem of solving a single operator equation of the 

form 

where H is a n  appropriate (real or complex) Hilbert space. Here X is a typi- 

cal "load" parameter, e.g., the Reynolds number, A is a linear operator and B 

is a quadratic operator generated by a bilinear form. In this setting many 

bifurcation and stability results for problems in fluid mechanics have been 

obtained and the reader is referred to [I; 10; 11; 211 and the bibliographies 

therein for a detailed account of such results. 

In fact, there may be considerably more structure in a nonlinear stability 

Droblem in fluid mechanics than that  implied by a n  operator equation such as 

(1.1). As shown in a recent series of papers by the authors [12;13;19], a ''struc- 

ture" parameter, say 7, also may be present so tha t  equation (1.1) may be actu- 

ally of the form 

(*I U - X(L--.YM)U - F(u) - ~ G ( u )  = 0, u E H ,  X E R', 7 E R', 

where H is again an  appropriate Hilbert space, L and M are linear opera- 

tors, and F and G are generated by bilinear operators. Equations of the 

form (*) are derived in [12;13] for B6nard-type convection problems and in [19] 

for the Taylor problem. It is the purpose of the present paper to describe a 
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setting in which it is possible t o  determine a complete set of bifurcation equa- 

tions for a n  operator equation of the form (*) by using the structure parameter 

y as a n  "amplitude" parameter rather than regarding y as merely a constant 

t o  be incorporated into the operators M and G in (*). Complete bifurcation 

diagrams are obtained by such an  approach because, e.g., the "reduced" bifur- 

cation equations contain linear as well as bath quadratic and cubic terms. This 

is in contrast to  many other approaches in bifurcation theory based upon split- 

ting methods (e.g., see [lo; 11; 18; 211) in which either linear and quadratic or 

linear and cubic terms appear in the reduced equations. In this sense the spirit 

of the approach presented here is somewhat like tha t  of singularity theory as in 

Golubitsky & Schaeffer [i'], however, our approach also has points in common 

with those in Busse [2] and Chow, Hale & Mallet-Paret [4; 51. The present 

paper emphasizes the identification and utilization of structure parameters in 

fluid mechanics but the approach presented here applies equally well t o  general 

classes of bifurcation problems provided tha t  such problems have appropriate 

"higher order'' terms (e.g., see the general class of variational problems studied 

in [14)). 

The following hypotheses are chosen to illustrate our approach with a 

minimum number of technical difficulties. We consider equation (*) under the 

following hypotheses in which H is a real Hilbert space with norm I I  I I  gen- 

erated by a n  inner product ( , ). 
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(Hl) The linear operator L: H - H is selfadjoint and compact, and, if 

p0 denotes the siiiallest positive characteristic value of L, then the dimension 

of tlie null space N E N(I--I-(~L) of L is n = 1 and N is spanned by $o 

with lh,boIl = 1. 

(H2) The linear operator M: H + H  is compact and satisfies 

1 1 
M: N N , where N denotes the orthogonal complement of N in H .  

(H3) The critical characteristic value, X, = X,(y), of L, L - yM, i.e., 

tlie positive characteristic value of L, of least magnitude, is of the form 

where A is real and analytic and satisfies A(y) = O ( q )  as y --f 0. Here 

b = (A~~I<A4~~o,$o) where I<: N + N denotes the inverse 01 Lhe restriction of 
1 1 

1 
(I-p(jL) t o  N .  

fH4I The nonlinear operators F(w) = G(~7,w) and G(w) = r(w,Tv) are 

generated by bounded bilinear operators a: H X H --* H and 

1 r: H X H -+ H ,  where, in addition, a: N X N - N .  

The assumption in (Hl) tha t  dimN = 1 is made merely for the sake of 

convenience; more general settings with d i m N  > 1 niay be treated along the 

lines in [la; 13; 191, however, the actual  solution of the  bifurcation equations 

may Le, of course, much more difficult in the case diniN > 1. The assumption 

(1.2) in (1-13) is the "natural" expansion for A, and also is made for tlie sake of 

convenience. I t ,  or a suitable modification, holds in many linear problems in 
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fluid mechanics even if M is not symmetric and d i m N  > 1 (e.g., see (3; 8; 12, 

13; 191); if M is symmetric, then (H3) may be omitted. The modifications 

required when H is a complex Hilbert space are somewhat more involved but 

may be formulated as in [12, $41 in terms of real operators and group represen- 

tations (see also [2O; 211). Finally, if one wishes to carry out a linear stability 

analysis of solutions of (*) in the case d i m N  > 1, one may proceed as in [12, 

$51 (see also [IS]). 

Remark 1.1. In many problems in fluid mechanics the bilinear operator 

@ in (H4) will be generated by the nonlinear term (;-V)y in the Navier-Stokes 

equations. If so, then @ satisfies the additional condition 

(1.3) 

The condition (1.3) plays a role in determining the actual farm of the bifurca- 

of the tion equations associated with (*) but it is not required in the derivxtjlan 

bifurcation equations. Thus, condition (1.3) is not included as part  of (H4), 

however, it is used in the application t o  rotating Couette-Poiseuille flow in See- 

tion 4 and also in the applications to Bdnard-type convection problems in [12; 

131 and to the Taylor problem in [19]. 

(@(u,v),w) = -(@(u,w),v), U,V,W E H . 

. .  

The outline of the paper is as follows. In Section 2 we make use of 7 as 

an  amplitude parameter and derive the bifurcation equation associated with (*) 

under hypotheses ( H l )  through (H4). In Section 3 the bifurcation equation is 

solved under an  additional invariance assumption on the remainder term and, 

for each ikd 7 sufficiently small, a complete bifurcation diagram is obtained. 
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In Section 4 we use the above approach to study rotating Couette-Poiseuille 

channel flow. We show, in particular, that the superposition of a Poiseuille flow 

on a rotating Couette channel flow is, in general, destabilizing. This type of 

result was conjectured in [17] for non-rotating combined Couette-Poiseuille flow 

on the basis of numerical calculations for the linearized Navier-Stokes equa- 

tions. 
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2. The bifurcation equation. The bifurcation equation associated with 

(*) is derived here using standard splitting methods except tha t  the structure 

parameter 7 plays the role of an  amplitude parameter. 

I I 
Let P: H + N denote the orthogonal projection of H onto N and 

let S = I - P: N + N denote the orthogonal projection of H onto N .  For 

7 sufficiently small, we shall seek solutions of (*) of the form 

(2-1) u = 7(+k7Q), = Po - Po?(P02b-T), 

where are t o  be determined. Note t h a t  if 

T =  ro + O(7) and if A, = X,(y) is defined as in (H3), then 

A = X, + poroy + O ( T ) .  Thus, for 7 sufficiently small, a solution of (*) of the 

form (2.1) is subcritical if ro < 0 and supercritical if ro > 0. 

$J E N ,  Q E N1 and T E  R' 

1 
Substituting (2.1) into equation (*), using the projection P onto N and 

S onto N ,  and making use of (H2) and (H4), one obtains the following equa- 

tions in N and N :  
I 

(2.2a) 0 = (I-p&)Q + poM$ - FW) 

+ rp [POMQ--*($, Q)-*(Q,$)-G ($91 
+ ?P[Po(~-P02b)M$ + Po(P02b-T)LQ 

- F(Q) - m 4 Q )  - ww9] 
+ 13P[Po(~-P02b)MQ - G(Q)], 

(2.2b) 0 = (Pib-T)$ + S[PoMQ-*(~,Q)-*(Q,$J)-G($)] 

- rs[F(Q>+r(~,Q>+r(Q,$)] + ~s[po(.-po'b)MQ-G(Q)]. 
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Since I< [(I-pJ,)lJ-' is bounded on given p > 0 there exists yo > o 

such tha t ,  if ($,T) E N X R' with 1.1 < p and II+lI < p, then by the implicit 

function theorem (2.2a) can be solved uniquely for q = Q($,r,y) in N pro- 

vided t h a t  171 < yo. In fact, @ is analytic and of the form 

I 

where 9, = *~($,T,Y) E nf is bounded with bound depending only on p. It is 

important here tha t  p can be arbitrarily large provided tha t  7 0  is chosen 

sufficiently small. Subbing @ into (2.2b), taking the inner product with Go, 

and making use of the definition of b in (H3), one obtains, for $ of the form 

$ = PG0 with P E R', the bijurcation equation associated with (*): 

where $ = p$Jo and q1 = *l(P$o,~,y). Moreover, r is analytic in ( P , T , ~ )  

and, for some ro depending only on p, satisfies 



. 

(2.6) l r ( A w ) l 5  roIrI, IPI < P,  1.1 < P7 Irl < 70 .  

Note that  if, for f ixed y satisfying 171 < yo, (P*,r*,y) is a solution of 

(2.4) with 1." I < p and \@*I < p, then (v*, X*) E H X R1 given by 

(2.7) V* = r(P"0 + 7Q(P*$o,7vl), A* = Po - PoS(cc02b-~) 

is a solution of equation (*). 

In the next section we solve the bifurcation equation (2.4) under an addi- 

tional invariance assumption on the remainder term r. 

I - ~~ 

i 8 
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3. Solutions of equation (*). In many problems of the type considered 

here the remainder term r in (2.5) may satisfy additional properties. E.g., 

because of invariance and symmetry considerations, r may have the form 

where s is analytic and s and its partials with respect to p and T are uni- 

formly of order O(y) as y ---* 0; one has, e.g., 

(3.2) b(/3,w)l 5 solrl, 1/31 < P ,  1.1 < P,  Irl < 7 0 ,  

for some so depending only on p. In such problems the bifurcation equation 

(2.4) may be factored and replaced by 

It is this type of "factoring" t h a t  is also the key to  the solution of more difficult 

problems with dim N > 1 (e.g., see [13; 15; 191). Since E is a mapping of a 

neighborhood of (O,O,O) E H" into a', i t  is natural LO ~ e e ~  soiulrii)iis ui \".a) 

for y near 7 = 0, hence solutions (v*, A*) of (*) in the form (2.7), by means of 

the implicit function theorem. We have, e.g., the following result. 

- ,  . 

Theorem 3.1. Given p > 0 there exists yo > 0 such tha t  for 171 < yo 

equation (3.3) has a solution 

(3-4) 7 = <P,Y) E aP + cp2 + Q ( P , ~ )  

that  is bounded, analytic and unique in 
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where the constant k depends only on p, and rl is O(y) as y 4 0,  uni- 

formly for 1/31 < p. For each fixed y Satisfying Irl < yo, the corresponding 

nontrivial solution branch (v*((p), A*(@)) of (*), 1/31 < p,  has the form (2 .7)  with 

(p* = P and ? given by (3.4). 

Proof. Let Po satisfying IPoI < p be given and set r0 = aPo + c@. It 

- -1. follows from (3.3) tha t  ( p o , ~ o , ~ )  is a solution of (3.3) at which - - d E  
8.T 

Thus, by the implicit function theorem, (3.3) has a solution T = r(P,r) t h a t  

is bounded, analytic and unique in a neighborhood of ( P , T , ~ )  = ( p o , ~ O , O )  with 

T ( , ~ ~ , O )  = ro. Since 

(3.6) I-P-cP2 I = IS(P,T,Y) I < so IY I < SOYO, 

a finite number of such neighborhoods cover B ,  provided tha t  yo is suficiently 

small. For fixed y satisfying Iyl < yo, the form of the corresponding solution 

branch (v*(p), X*(P)) E H X R1 is a n  immediate consequence of the above con- 

s t r uc t ion. 

Remark 3.1. One can show also tha t ,  for each fixed y satisfying 

Iyl < yo, if c > 0, then the branch of solutions, Q ,  of (3.3) determined by (3.4) 

has a unique turning point in B at P = pT(y), where PT is of the form 

dT with PI(?) = O(y) as y - 0. The fact tha t  - (/3,'y) = 0 in (3.4) at a 
ap 
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unique point in B 

theorem; one considers the equation 

follows from another application of the implicit function 

a7 
and uses that ,  at = 0, - = 0 only at /3 = -a/2c. aP 

It can be shown (e.g., see [12, '$5; 16; 211 that ,  for fixed 7, the linearized 

stability at points (VI, A*) along the solution branch of (*) in Theorem 3.1 is 

along the branch Q. Since, along Q,  (2.4) 
dD determined by the sign of - 
aP 

holds and 

(3.9) 

m e  sees that ,  for 'yo sufficiently small, the stability of (v*(/F), X*(,O)) is 

indeterminate only at /3 = 0 and at the unique turning point on Q given by 

(3.7). Thus, we have the following corollary t o  Theorem 3.1. For the statement 

of the corollary we may assume tha t  a 5 0; if a > 0, one replaces p by -p 

in the given intervals. 

Corollary 3.1. If a 5 0 and c > 0 then, for yo sufficiently small, the 

solution branch 

--p < P < 0 and &(?I) < P < p and unstable for 0 < P < P T ( ~ ) .  

(v*(P), A*(@)) of (*) obtained in Theorem 3.1 is stable for 

We wish to  emphasize that ,  for each fixed 7 sufficiently small, the solu- 

tion branches of the bifurcation equation (2.4) obtained in the above discussion 



I I  are global" in the (p,r) plane, however, the corresponding solution branch 

(v*, A*) of (*) may, of course, be "small" because of the amplitude factor y 

in (2.7). 

The above results are formulated only t o  illustrate the approach when 

d i m N  = 1. Complete solutions of the bifurcation equations and the 

corresponding stability results may be, of course, much more difficult t o  obtain 

in problems where d i m N  > 1 because in such problems, e.g., there may be 

points of secondary bifurcation at which the null space of the appropriate 

linearized operator has dimension greater than one, (see the discussion of hexag- 

onal solutions in [13]). 
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4. Rotating Couette-Poiseuille channel flow. In this section we study 

rotating Couette-Poiseuille channel flow and show that ,  in general, the superpo- 

sition of a Poiseuille flow on a rotating Couette channel flow is destabilizing. In 

the case of non-rotating Couette channel flow this result was conjectured in 1171 

on the basis of numerical calculations for the linearized Navier-Stokes equa- 

tions. In the nonlinear analysis presented here, it is crucial t h a t  there are 

Coriolis effects present in the problem so tha t  the swirl-like parameter S 

defined in (4.2) is positive. 

We consider viscous incompressible flow in a rotating infinite-channel of 

width I. The non-dimensional Navier-Stokes equations in a rectangular coordi- 

nate system rotating about the z-axis with constant angular speed, CI, are given 

by (e.g., see [9, p. 1G31) 

- yp' - (V - a V)V I -  + 2s = 0, (x,Y,z) E c, 
P I  

V V  = 0 I - -  

1 1 
2 

where C = {(x,y,z): --oo < x < 00, -- < y < T ,  -GO < z < a>, and 

y = (v1,v2,v3). Here the Coriolis acceleration terms are determined by the 

square brackets, the rectangular coordinates are scaled by I ,  the velocity com- 

ponents are scaled by u,, where u, denotes the maximum velocity of pure 

Couette flow at y = 1/2 in the direction of the x-axis with no Poiseuille flow 
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present (e.g., see [9, p. 179]), S is the swirl-like parameter 

(4.2) s = ln/vc, 

and Re is the Reynolds number 

(4.3) Re = lUc/v, 

where u is the kinematic viscosity. We assume throughout that S is fixed and 

1 
2 

o < s < - .  

For the basic unperturbed flow we take a pressure, P, and a combination 

Couette-Poiseuille velocity distribution = (U,(y), 0, 0), where 

1 s 1 1 
(4.4) 

(4.5) s = uppc  . 

ULY) = (Y+,) + 7 (1-4Y2), -- 5 Y 1. , 9 
2 

1 
4 

Here - Up denotes the maximum velocity of pure Poiseuille flow in the direc- 

tion of the x-axis with no Couette flow present (e.g., see [9, p. 661). 

We shall seek solutions of (4.1) that  are perturbations of v and P, and 

are independent of x. Setting v = v + VJ, p' = P + q in (4.1) and assuming - 
= w(y,z) and q = q(y,z), one obtains the disturbance equations 

R;'A~ - vq + 2s - - w.vw .., - I  = 0, I 

v - w = o ,  --<y<!, 1 1 - o o < z < c Q ,  
2 I I  

a a  where O =  (0, - -). The boundary conditions here are VJ = 0 on a y '  dz 
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1 
2 

y = f-. To introduce the appropriate parameters we set 

(4.6) X = [2S(l-2S)]1/3Re, 0 < S < - 1 
2 '  

w1 = x-'(2S-1)u1, wg = x-'[2s(1-2s)]'/2u2 

w3 = X-'[2s(1-2S)]'/2u3, q = A-1R-1 e [ 2S( 1 -2S)] 1/2p, I 
and define the structure parameter, 7, as 

s (4.8) 7 = - = 

The disturbance equations for u = (ul, u2, ug) and p become ... 

(4.9a) Au, + X(1-2yy)u2 - 

(4.9b) Au2 - $ + Xu, - 

" +u3T0 (4.9c) A u ~  - - (up 

du2 d U 3  1 1 
ay dz 2 2 '  

(4.9d) - +-=o,  - - < y < -  - -oo<z<oo ,  

with the boundary conditions 

1 
2 

(4.10) u l = u 2 = u 3 = 0  on y = & - - .  

The equations in (4.9) are4 closely related t o  those for the generalized B6nard 

problem studied in [12; 131. In carrying out the analysis below for rotating 

Couette-Poiseuille flow we shall make repeated use of this relationship. 
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We next introduce an  appropriate Hilbert space setting in which t o  seek 

solutions of (4.9) tha t  are periodic in z. Given a positive number Q (to be 

specified below in (4.22)) we set 

1 1 27r 
2 2 CY 

(4.11) R {(y,~):  -- < y < - and 0 < z < - }. 

The Hilbert space, H ,  used throughout this section is defined as the closure of 

the set {v = (v1,vz,v3): v is smooth, periodic in z with period -, 27r and van- 
CY 

1 
2 

ishing in a neighborhood of bl = - with = 0} in the norm, II 11, associ- 

ated with the inner product 

3 
(4.12) (v,w) = J c yvj-ywj . 

R j=1 

Here and in the sequel, whenever possible, the vector notation y is suppressed 

when dealing with elements of H .  

To formulate the problem as an  operator equation in H ,  we take the 

scalar product of (4.9a) through ( 4 . 9 ~ )  with w E H ,  and use (4.10) and integra- 

tion by parts to obtain 

(4.13) (u,w) - ~(L,u,w) - (F(u),w) = 0. 

Here, for each y E R', the linear operator L,: H + H and the quadratic 

operator F: H - H are given by 

(4.14) L, = L - yM, 

(4.15) F(u) = @(u,u), u E H ,  
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where the operators L: H + H and M: H - H are defined (weakly) by 

and the bilinear operator @: H X H 3 H is defined (weakly) by 

av & 
(4.18) (@(u,v),w) = -J [(u.TJ')v].w = -J ( u ~  - + u3 -p, ' a y  

Since w in (4.13) is a n  arbitrary element of H ,  one obtains an  operator equa- 

tion of the form (*) in Section l, namely 

Standard regularity methods (e.g., see [lo; 111) can now be used to show that  

the problems of finding classical solutions of (4.9), (4.10) and solutions of ( t ) in 

H are equivalent. 

We require the following facts about the linear problem associated witn ( T) 

when y = 0, namely the problem 

(4.19) u - pLu = 0, u E H ,  p E R1. 

The linear problem (4.19) is equivalent to the classical problem, for smooth u 

and p periodic with period 27r/cu in z, obtained by setting y = 0 and omit- 

ting the nonlinear terms in (4.9). It is sufficient to consider the solutions of 

(4.19) given by (see also [12, (2.11)ffI and [lo,  $31) 
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(4.20b) p = - ~ ' C O S O Z D ' $ ~ ,  

( 4 . 2 0 ~ )  $3 = -o-'&, 

d2 d where D2 = - - 2, a prime denotes - and $1 and $2 satisfy 
dY2 dY ' 

I 1 
2 (4 .21~)  4 1 = & = 4 2 = ~  at y = & - .  

(The solutions of (4.19) with c o s a  and s i n a  interchanged lead to flows that  

differ only in orientation.) One can show for a > 0 (e.g., see [8]) tha t  the 

eigenvalue problem (4.21) has a countable number of positive, simple eigen- 

values, O. Moreover, 

pl(a) ---* 00 as either a + 0' or o ---* 00. Consequently, p l ( a )  assumes a n  

absolute minimum at some a. > 0. We assume that a. is unique so that 

pl(a) > pl (ao)  if o # ao. (This property is suggested by numerical calculations 

(e.g., see [3, §15(b)] and [G, $101) and is usually assumed in such problems.) For 

some given integer po 2 1 we now choose a so t h a t  

O < pl(a)  < p2(a) < - - * , depending continuously on 

(4.22) 0 0  = Po" 

and use this cy to define the basic Hilbert space H of this section. 

We may now determine a complete solution of the linear problem (4.19). 

Since c o s m  and s i n a  in (4.20) must have period 27r/cy in z ,  it follows tha t  

the only wave numbers, a, corresponding to eigenfunctions having the required 
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period in z are those for which 2 = p 2 2  for some integer p. For each 

p(p = 1,2, * - ) the eigenvalue problem (4.21) has an  infinite sequence of real, 

nontrivial solutions 

Since ( - ~ , - 4 ~ , 4 ~ )  is a solution of (4.21) whenever (p,dl,&,) is a solution of 

(4.21), we may order the indices so that  

(4.23) $f(-q) = -4fq, &f'(-q) = 4fq, pp(-q) = -pPq, and 0 < pPl < pP2 < * . 

Using this notation, we see from our assumption (4.22) on a that  

so t h a t  P'pq > Po if (PA) # (POJ), q L 1. 

The above discussion of the underlying problem (4.21) shows that the full 

eigenvalue problem (4.19) in H has the solutions 

(4.25) 1 = ppq and u = Pq, p = 1,2, - * - ; q = f l , f 2 ,  - * - , 

where 

with $ f q  determined by (4.20~). It follows as in (12, Appendix] that the eigen- 

functions {Pq} may be assumed orthonormal in H ,  after rescaling by con- 

s tants  depending upon p and q, i.e., 

(4.27) (Pq,ly.s) = Spr6qsr 
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where Si, is the usual Kronecker delta symbol. 

The following lemma summarizes some of the basic facts for the linearized 

problem (4.19). The compactness properties are essentially known (e.g., see [lo; 

111) while the characterization (4.28) follows easily from (4.17). 

Lemma 4.1. (i) The linear operator L: H -+ H defined in (4.16) is 

self-adjoint and compact and its characteristic values and eigenfunctions are 

given by (4.25). The eigenfunctions {2cpq} satisfy (4.27) and are complete in H .  

(ii) The linear operator M: H --t H is compact and its adjoint, M*, is 

characterized by 

(4.28) (M*v,w) = 2 J yv1w2, v,w E H . 
n 

We show next that  hypotheses (Hl)  through (H4) of Section 1 are satisfied 

so tha t  we can make use of the structure parameter approach developed in Sec- 

tion 2. To minimize the calculations, we shall make repeated use of the results 

obtained in [12; 131. This may be done in most cases simply by replacing & 

and 44 in [12] by 42 and d1 of the present paper, respectively. 

Since po defined in (4.24) is a simple eigenvalue of (4.21) and po < ppq 

for (p,q) # (po,l), q 1. 1, po is simple and also the smallest positive charac- 

teristic value of L in H .  The associated null space, N ,  of I-poL is spanned 

by $o is spanned by {Pq: (p,q) # (po,l). Thus, making use 

of part (i) of Lemma 4.1 above, we see that  (Hl) is satisfied. If M is defined as 

I Po' and N 



21 

in (4.17), then (H2) can be verified by using part (ii) of Lemma 4.1 above and 

part (ii) of Lemma 3.1 in [12]. The form of X, = X,(r) in (H3) may be derived 

as in Lemma 3.2 of [12]. In fact, the characteristic values of L, L-7M are 

determined by the problem obtained from (4.21) by replacing (4.21a) by 

Thus, X, is simple and is also real as an eigenvalue of the problem (4.21) with 

(4.21a) replaced by (4.29) and a set equal to a. (e.g., see [SI). Finally, setting 

G(w) 0 in (H4) and recalling the definition of iP in (4.18), one sees t h a t  F in 

(4.15) is generated by the bounded bilinear operator iP (see also [lo; 111). 

Since it follows as in part (iv) of Lemma 3.1 in [12] tha t  @: H X N - N , we 

see tha t  (H4) is also satisfied. 

I 

To determine the coefficients a and c in the bifurcation equation (2.41, 

we note first of all tha t  iP satisfies, in addition, the condition (1.3) in Remark 

1.1 (see part  (iii) of Lemma 3.1 in [12]). Thus, we may make use of parts (v) 

and (vi) in Lemma 3.1 of [12] to show that a = 0 always and c > 0 in essen- 

tially all cases. Moreover, by making use of the invariance of equations (4.9) 

under the translation z z + ../cy, one can show that ,  for each T and 7, the 

remainder term r in (2.5) is odd in p (see the last part  of Appendix B in [19] 

and also the proof of Lemma 3.2 in [13)). Thus, r has the special form given in 

(3.1), where, in addition, s is even in p. 

In view of the above discussion one can now use Theorem 3.1 and Corollary 

3.1 with 0 < 7 < yo t o  determine nontrivial solutions of the operator equation 
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( t ) and, hence, roll-like solutions of the disturbance equations (4.0) satisfying 

the boundary conditions (4.10). Thus, for each fixed 7 satisfying 0 < y < yo, 

where yo is sufficiently small, rotating Couette-Poiseuille flow is stable up to 

A,(?) at which point it loses stability to a supercritical, stable roll-type solution 

given by (2.7) with p* = p, r* given by (3.4) with a = 0, and Go = @”’ given 

by (4.2G). 

As we now show, the above result implies tha t  the superposition of a 

Poiseuille flow on a rotating Couette channel flow is, in general, destabilizing. 

Recall t h a t  X,(y) is given by an  expression such as (1.2) with 

b = (MISM$o,$o). If b > 0, then, for y sufficiently small, X,(7) < X,(O) = po, 

where is the critical eigenvalue of the linearized problem for rotating 

Couette flow; t o  see tha t  b > 0 here, one can make use of the results in [3; 

§7l(d)] (see also [6, p. 981) for narrow-gap Taylor problems with the parameter 

(1-p)/(l+p) in [31 replaced by y in (4.8). Thus, for a given value of the swirl 

S ,  0 < S < -, the addition of a sufficiently small component of Poiseuille flow 

to a basic rotating Couette channel flow always leads to roll-type solutions at 

values of A that  are greater than  X,(y) but less than  the critical eigenvalue, 

po, at which rotating Couette flow loses stability. This type of result was con- 

jectured in [17] for non-rotating combined Couette-Poiseuille flow on the basis 

of numerical calculations for the linearized Navier-Stokes equation. 

po 

1 
2 
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